Tuesday, June 11, 2024

Measuring Resistance of Fuses with a Milliohm Meter and Kelvin Clips -2- (250V Fuses measurement results )

Ensuring the integrity and reliability of 250V fuses is crucial for maintaining the safety and functionality of high-voltage electrical systems. In this post, I'll share my experience measuring the resistance of 250V fuses using an affordable milliohm meter equipped with Kelvin clips, highlighting the key considerations and benefits of this method.

Why Measure Fuse Resistance?

Regularly measuring the resistance of 250V fuses is essential for several reasons:

1. Ensuring Reliability:

Over time, fuses can develop higher resistance due to aging or exposure to harsh conditions.

2. Troubleshooting:

Identifying a fuse with abnormal resistance can help diagnose and prevent circuit issues.

3. Preventive Maintenance: 

Regular measurements allow for the replacement of fuses before they fail, avoiding potential downtime or damage.

Tools Needed

For this task, I used:

- Milliohm Meter:

 Capable of measuring low resistance values accurately.

- Kelvin Clips: 

Four-wire probes that eliminate the influence of lead and contact resistance, providing precise measurements.

The Measurement Process

Here's a quick overview of the process:

1. Calibration:

Ensure the milliohm meter is calibrated using the shorting clip and zeroing function.

2. Connecting Kelvin Clips: 

Attach the clips to the fuse, ensuring a solid, clean connection at opposite ends.

3. Taking the Measurement: 

Power on the meter and read the displayed resistance value.

Voltage Drop Across the Fuse

For a milliohm meter with a measurement current of 100 mA, the voltage drop across the fuse can be calculated using Ohm's Law (V = I × R).

Example Calculation:

- For a measured resistance of 0.005 ohms: 

  - Voltage Drop: V = 100 mA × 0.005 ohms = 0.5 mV

- For a measured resistance of 0.002 ohms: 

  - Voltage Drop: V = 100 mA × 0.002 ohms = 0.2 mV

Change in Resistance Due to Heating

When a fuse is subjected to higher currents, it can heat up, causing its resistance to change:

- Initial Resistance:

The resistance at room temperature is relatively low.

- Heating Effect:

Higher current flow increases temperature, raising the resistance.

- Increased Resistance:

This change can be significant, especially for currents near the fuse’s rated limit.

Measured resistance

I having a long time a box with slow 250V glass fuses with values 50 mA, 160 mA, 200 mA, 315 mA, 500 mA, 800 mA, 1 A, 2 A, 2.5 A. It would be nice to use these fuses as a test-set. 

My box with fuses (open)

I first did think it was needed to measure each fuse several times. However during my first (not documented) test i discovered that remeasuring a fuse id almost gave no variation in the result. (max 1 or 2 in the last digit).  The variation between different fuses of the same rating was much bigger. Therefore i decided to measure all the fuses once and put the results in a table (1).

However there were some limitations: 

- According to the manual, the resistance is measured with a testing current of about 100 mA. ( i did not check this yet.) Therefore i decided to skip to 50 mA fuses as they would be blown an not measured.

- The fuses are relative old. I expect at least 25 years. The nice thing is that it is a set of in total more than 140 fuses of different values and the aging effect of the fuses is included.

- The box with fuses had at (least) two sources. A box with fuses that i did buy many years ago and a similar box with fuses that i received some year ago from someone else. I did merge the content of these boxes a year ago to save some space.

- I noticed some fuses had a resistance far above 1 ohm. (And i expect some of these fuses where bad. I measured with a multi-meter around 200 Ohm and some above 10 Mega Ohm and even some fuses that made no connection at all. I removed these fuses from the box with fuses, kept them apart and did not include the results. I expect the fuses that made no connection at all are blown fuses and i did throw them away.  

- All my 2.5 A fuses had corrosion and the measured resistances where above 1 Ohm. I don't know if this is normal or this was due to aging and/or the corrosion. The strange thing is that all the 2.5 A fuses that had visible corrosion and almost none of the other fuses.  I don't know the source of the corrosion. Perhaps the fuses are of a different material or there was humidity that mainly reached the 2.5 A fuses and not the other fuses. Therefore i excluded all of the 2.5 A fuses.

Results

Below a table with the measured resistance , the calculated voltage drop at 100mA and the voltage drop at the rated current.

Table 1: Measured resistances with calculated voltage drops

Result /
 measurement
Number
 mA Measured
 resistance 
Calculated
Voltage drop
at 100mA
Calculated
Voltage drop
at rated current
1 500 0.447 0.04470 2.235
2 500 0.477 0.04770 2.385
3 500 0.446 0.04460 2.230
4 500 0.434 0.04340 2.170
5 500 0.520 0.05200 2.600
6 500 0.461 0.04610 2.305
7 500 0.510 0.05100 2.550
8 500 0.536 0.05360 2.680
9 500 0.462 0.04620 2.310
10 500 0.432 0.04320 2.160
11 500 0.502 0.05020 2.510
12 500 0.482 0.04820 2.410
13 500 0.452 0.04520 2.260
14 500 0.465 0.04650 2.325
15 500 0.424 0.04240 2.120
16 500 0.456 0.04560 2.280
17 500 0.469 0.04690 2.345
18 500 0.461 0.04610 2.305
19 160 0.579 0.05790 0.926
20 160 0.570 0.05700 0.912
21 160 0.537 0.05370 0.859
22 160 0.640 0.06400 1.024
23 160 0.409 0.04090 0.654
24 160 0.658 0.06580 1.053
25 160 0.664 0.06640 1.062
26 160 0.531 0.05310 0.850
27 160 0.613 0.06130 0.981
28 160 0.568 0.05680 0.909
29 160 0.677 0.06770 1.083
30 160 0.581 0.05810 0.930
31 160 0.604 0.06040 0.966
32 160 0.619 0.06190 0.990
33 160 0.494 0.04940 0.790
34 160 0.615 0.06150 0.984
35 160 0.689 0.06890 1.102
36 160 0.557 0.05570 0.891
37 160 0.409 0.04090 0.654
38 160 2.900 0.29000 4.640
39 1000 0.088 0.00880 0.880
40 1000 0.089 0.00890 0.890
41 1000 0.092 0.00920 0.920
42 1000 0.087 0.00870 0.870
43 1000 0.089 0.00890 0.890
44 1000 0.089 0.00890 0.890
45 1000 0.087 0.00870 0.870
46 1000 0.089 0.00890 0.890
47 1000 0.087 0.00870 0.870
48 1000 0.094 0.00940 0.940
49 1000 0.091 0.00910 0.910
50 1000 0.096 0.00960 0.960
51 1000 0.089 0.00890 0.890
52 1000 0.087 0.00870 0.870
53 1000 0.089 0.00890 0.890
54 1000 0.092 0.00920 0.920
55 1000 0.091 0.00910 0.910
56 1000 0.090 0.00900 0.900
57 1000 0.090 0.00900 0.900
58 315 0.700 0.07000 2.205
59 315 0.562 0.05620 1.770
60 315 0.761 0.07610 2.397
61 315 0.706 0.07060 2.224
62 315 0.852 0.08520 2.684
63 315 0.805 0.08050 2.536
64 315 0.607 0.06070 1.912
65 315 0.723 0.07230 2.277
66 315 0.681 0.06810 2.145
67 315 0.612 0.06120 1.928
68 315 0.646 0.06460 2.035
69 315 0.884 0.08840 2.785
70 315 0.760 0.07600 2.394
71 315 0.719 0.07190 2.265
72 315 0.871 0.08710 2.744
73 315 0.766 0.07660 2.413
74 315 0.681 0.06810 2.145
75 315 0.620 0.06200 1.953
76 315 0.759 0.07590 2.391
77 315 0.602 0.06020 1.896
78 2000 0.039 0.00390 0.780
79 2000 0.039 0.00390 0.780
80 2000 0.039 0.00390 0.780
81 2000 0.042 0.00420 0.840
82 2000 0.038 0.00380 0.760
83 2000 0.037 0.00370 0.740
84 2000 0.035 0.00350 0.700
85 2000 0.703 0.07030 14.060
86 200 0.331 0.03310 0.662
87 200 0.485 0.04850 0.970
88 200 0.545 0.05450 1.090
89 200 0.405 0.04050 0.810
90 200 0.486 0.04860 0.972
91 200 0.584 0.05840 1.168
92 200 0.490 0.04900 0.980
93 200 0.573 0.05730 1.146
94 200 0.472 0.04720 0.944
95 200 0.442 0.04420 0.884
96 200 0.446 0.04460 0.892
97 200 0.508 0.05080 1.016
98 200 0.515 0.05150 1.030
99 200 0.429 0.04290 0.858
100 200 0.489 0.04890 0.978
101 200 0.395 0.03950 0.790
102 200 0.491 0.04910 0.982
103 250 0.268 0.02680 0.670
104 250 0.517 0.05170 1.293
105 250 0.382 0.03820 0.955
106 250 0.388 0.03880 0.970
107 250 0.385 0.03850 0.963
108 250 0.340 0.03400 0.850
109 250 0.348 0.03480 0.870
110 250 0.366 0.03660 0.915
111 250 0.249 0.02490 0.623
112 250 0.322 0.03220 0.805
113 250 0.338 0.03380 0.845
114 250 0.405 0.04050 1.013
115 250 0.263 0.02630 0.658
116 250 0.361 0.03610 0.903
117 250 0.350 0.03500 0.875
118 250 0.247 0.02470 0.618
119 250 0.349 0.03490 0.873
120 250 0.322 0.03220 0.805
121 250 0.342 0.03420 0.855
122 250 0.371 0.03710 0.928
123 250 0.292 0.02920 0.730
124 800 0.151 0.01510 1.208
125 800 0.136 0.01360 1.088
126 800 0.139 0.01390 1.112
127 800 0.127 0.01270 1.016
128 800 0.133 0.01330 1.064
129 800 0.131 0.01310 1.048
130 800 0.141 0.01410 1.128
131 800 0.128 0.01280 1.024
132 800 0.128 0.01280 1.024
133 800 0.133 0.01330 1.064
134 800 0.136 0.01360 1.088
135 800 0.143 0.01430 1.144
136 800 0.127 0.01270 1.016
137 800 0.128 0.01280 1.024
138 800 0.135 0.01350 1.080
139 800 0.136 0.01360 1.088
140 800 0.132 0.01320 1.056
141 800 0.147 0.01470 1.176
142 800 0.132 0.01320 1.056

Some of the fuses gave results that made me doubt if the fuse had indeed the current rating i expected. However i did check the rating it on the fuse! 

Table 2: Summary of measured resistances  (Some outliers are removed.)
Fuse rating (mA) Average resistance  Min resistance  Max resistance
160 0.5797 0.409 0.689
200 0.4756 0.331 0.584
250 0.3431 0.247 0.517
315 0.7159 0.562 0.884
500 0.4687 0.424 0.536
800 0.1349 0.127 0.151
1000 0.0898 0.087 0.096
2000 0.0384 0.035 0.042
 
Fuses with a higher rating seem to have a lower resistance, however even in this box with fuses not always!  I decided to already publish the measured results with a quick summary. In an upcoming blog-post i will do a more in depth evaluation of the results.
My box with fuses (closed)

Conclusion

Measuring the resistance of 250V fuses with a milliohm meter and Kelvin clips is a straightforward yet powerful method to ensure the health of your high-voltage circuit protection devices. Regular checks can help you catch potential issues early, maintaining the integrity and safety of your electrical systems. It was also a good exercise to measure these fuses to check the health and variation between these fuses. This affordable and accurate setup is a valuable addition to any toolkit, providing peace of mind and reliable performance.

Stay tuned for more insights and results from my ongoing experiments and measurements and a more in-depth evaluation of these measured results. Happy measuring!

No comments: